Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.4.16 Printed on 25 March 2019 at 14:46:22

Project Information:

Assessed By: Aymon Winter (STRO014511) Building Type: Flat

Dwelling Details:

NEW DWELLING DESIGN STAGETotal Floor Area: 117.05m²

Site Reference: 49-51 Beulah Hill Plot Reference: 01-19-73120 A-5-12 PL1

Address: A-5-12, 49-51 Beulah Hill Sada Unit Ref: A5-A30

Client Details:

Name: Sada Architecture

Address:

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER) 19.57 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER)

16.59 kg/m²

OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 69.1 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 61.6 kWh/m²

OK

2 Fabric U-values

Element Average Highest External wall 0.16 (max. 0.30) 0.23 (max. 0.70) OK Party wall 0.00 (max. 0.20) OK Floor (no floor) Roof 0.13 (max. 0.20) 0.14 (max. 0.35) OK **Openings** 1.40 (max. 2.00) 1.40 (max. 3.30) OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 5.00 (design value)

Maximum 10.0 **OK**

4 Heating efficiency

Main Heating system: Database: (rev 440, product index 017558):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Worcester Model: Greenstar

Model qualifier: 34CDi Classic ErP

(Combi)

Efficiency 89.1 % SEDBUK2009

Minimum 88.0 % OK

Secondary heating system: None

Regulations Compliance Report

Cylinder insulation			
Hot water Storage:	No cylinder		
6 Controls			
Space heating controls	Programmer, room therr	nostat and TRVs	OK
Hot water controls:	No cylinder		
	No cylinder		
Boiler interlock:	Yes		OK
7 Low energy lights			
Percentage of fixed lights wit	th low-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
Continuous extract system			
Specific fan power:		0.17	
Maximum		0.7	OK
9 Summertime temperature			
Overheating risk (Thames va	alley):	Slight	OK
sased on:	•	, and the second	
Overshading:		Average or unknown	
Windows facing: North East		29.01m²	
Windows facing: North West		14.37m²	
Windows facing: South East		6.4m²	
Ventilation rate:		8.00	
Blinds/curtains:			
		Closed 100% of daylight hours	
10 Key features			
External Walls U-value		0.13 W/m²K	
Party Walls U-value		0 W/m²K	
Photovoltaic array			

Code for Sustainable Homes Report For use with Nov 2010 addendum 2014 England

Assessor and House Details

Assessor Name: Aymon Winter Assessor Number: STR0014511

Property Address: A-5-12

49-51 Beulah Hill

Building regulation assessment

kg/m²/year 19.57

TER 19.57 DER 16.59

ENE 1 Assessment - Dwelling Emission Rate

Total Energy Type CO₂ Emissions for Codes Levels 1 - 5

	%	kg/m²/year	
DER from SAP 2012 DER Worksheet		16.59	(ZC1)
TER		19.57	
Residual CO2 emissions offset from biofuel CHP		0	(ZC5)
CO2 emissions offset from additional allowable electricty generation		0	(ZC7)
Total CO2 emissions offset from SAP Section 16 allowances		0	
DER accounting for SAP Section 16 allowances		16.59	
% improvement DER/TER	15.2		

Total Energy Type CO2 Emissions for Codes Levels 6

	kg/m²/year	
DER accounting for SAP Section 16 allowances	16.59	(ZC1)
CO2 emissions from appliances, equation (L14)	14.22	(ZC2)
CO2 emissions from cooking, equation (L16)	1.61	(ZC3)
Net CO2 emissions	32.7	(ZC8)

Result:

Credits awarded for ENE 1 = 2.4

Code Level = 3

ENE 2 - Fabric energy Efficiency

Fabric energy Efficiency: 61.58 Credits awarded for ENE 2 = 0

ENE 7 - Low or Zero Carbon (LZC) Technologies

Reduction in CO2 Emissions

	%	kg/m²/year
Standard Case CO2 emissions		36.84
Standard DER		21.05
Actual Case CO2 emissions		33.54
Actual DER		17.75

Reduction in CO2 emissions 8.96

Credits awarded for ENE 7 = 0

Technologies eligible to contribute to achieving the requirements of this issue must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

The following requirements must also be met:

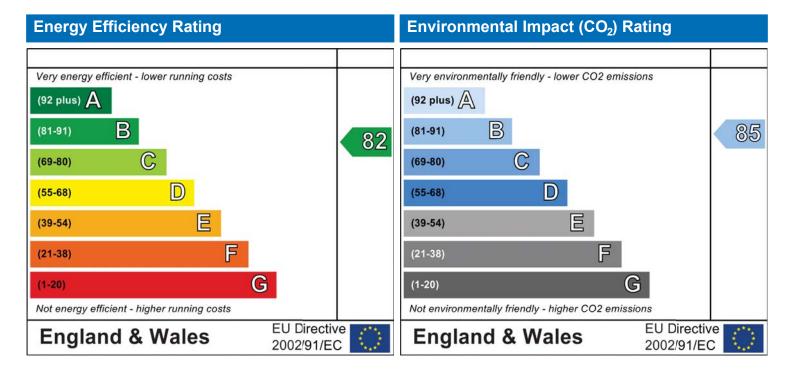
- Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under assessment.
- Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified.
- Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.
- All technologies must be accounted for by SAP.

CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPQA.

It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.

Predicted Energy Assessment

A-5-12 49-51 Beulah Hill


Sada Unit Ref: A5-A30

Dwelling type:
Date of assessment:
Produced by:
Total floor area:

Top floor Flat 12 March 2019 Aymon Winter 117.05 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Property Details: 01-19-73120 A-5-12 PL1

Address: A-5-12, 49-51 Beulah Hill

Located in: England Region: Thames valley

UPRN:

Date of assessment: 12 March 2019 **Date of certificate:** 25 March 2019

Assessment type: New dwelling design stage

Transaction type:

Tenure type:

Related party disclosure:

Thermal Mass Parameter:

Water use <= 125 litres/person/day:

New dwelling
Unknown

No related party
Calculated 75.08

True

PCDF Version: 440

Property description:

Dwelling type: Flat

Detachment:

Year Completed: 2013

Floor Location: Floor area:

Floor 0 61.55 m^2 2.56 m Floor 1 55.5 m^2 3.02 m

Living area: 25.91 m² (fraction 0.221)

Front of dwelling faces: South West

Opening types:

Name:	Source:	Туре:	Glazing:	Argon:	Frame:
Front Door	Manufacturer	Solid			PVC-U
Front Elev	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Metal
Side Elev	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Metal
Side Elev	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Metal

Storey height:

Name:	Gap:	Frame Factor	g-value:	U-value:	Area:	No. of Openings:
Front Door	mm	0.7	0	1.4	2.12	1
Front Elev	16mm or more	0.8	0.4	1.4	29.01	1
Side Elev	16mm or more	0.8	0.4	1.4	14.37	1
Side Elev	16mm or more	0.8	0.4	1.4	6.4	1

Name:	Type-Name:	Location:	Orient:	Width:	Height:
Front Door		Wall to Corridor	South West	0	0
Front Elev		External Wall	North East	0	0
Side Elev		External Wall	North West	0	0
Side Elev		External Wall	South East	0	0

Overshading: Average or unknown

Opaque Elements:

Туре:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Element	<u>:S</u>						
External Wall	120.86	49.78	71.08	0.13	0	False	14
Wall to Corridor	3.74	2.12	1.62	0.26	0.43	False	14
Wall to Lift Shaft	37.39	0	37.39	0.25	0.9	False	17
Roof	55.5	0	55.5	0.13	0		9
Roof to Terrace	6.05	0	6.05	0.14	0		9
Internal Element	S						
IW	214.32						9

SAP Input

 IC
 55.5
 9

 IF
 55.5
 18

 Party Elements

 Party Wall
 34.54
 20

 Party Floor
 61.55
 40

Thermal bridges:

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.1196

	(,	
Length	Psi-value		
22.63	0.3	E2	Other lintels (including other steel lintels)
12.62	0.04	E3	Sill
63.82	0.05	E4	Jamb
23.31	0.07	E6	Intermediate floor within a dwelling
29.82	0.07	E7	Party floor between dwellings (in blocks of flats)
5.05	0.06	E10	Eaves (insulation at ceiling level)
33.41	0.28	E15	Flat roof with parapet
24.88	0.09	E16	Corner (normal)
11.16	-0.09	E17	Corner (inverted – internal area greater than external area)
5.58	0.06	E18	Party wall between dwellings
8.6	0.12	E25	Staggered party wall between dwellings c
6.86	0	P2	Intermediate floor within a dwelling
5.4	0	P3	Intermediate floor between dwellings (in blocks of flats)
6.86	0.04	P5	Roof (insulation at rafter level)

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Centralised whole house extract

Number of wet rooms: Kitchen + 3

Ductwork: , rigid

Approved Installation Scheme: False

Number of chimneys: 0
Number of open flues: 0
Number of fans: 0
Number of passive stacks: 0
Number of sides sheltered: 2
Pressure test: 5

Main heating system:

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 440, product index 017558) Efficiency: Winter 86.7 % Summer: 90.0

Brand name: Worcester Model: Greenstar

Model qualifier: 34CDi Classic ErP

(Combi boiler) Systems with radiators

Central heating pump: 2013 or later Design flow temperature: Unknown

Boiler interlock: Yes Delayed start

Main heating Control:

Main heating Control: Programmer, room thermostat and TRVs

Control code: 2106

Secondary heating system:

Secondary heating system: None

SAP Input

Water heating:

Water heating: From main heating system

Water code: 901 Fuel :mains gas No hot water cylinder Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English Wind turbine: No

Photovoltaics: Photovoltaic 1

Installed Peak power: 0.98 Tilt of collector: Horizontal Overshading: None or very little Collector Orientation: South

Assess Zero Carbon Home: No

User Details: **Aymon Winter** STRO014511 Assessor Name: Stroma Number: Stroma FSAP 2012 **Software Version:** Version: 1.0.4.16 **Software Name:** Property Address: 01-19-73120 A-5-12 PL1 A-5-12, 49-51 Beulah Hill Address: 1. Overall dwelling dimensions: Av. Height(m) Area(m²) Volume(m³) Ground floor 61.55 (1a) x 2.56 (2a) =157.57 (3a) First floor (1b) x (2b) (3b) 55.5 3.02 167.61 Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+....(1n)117.05 (4) Dwelling volume (3a)+(3b)+(3c)+(3d)+(3e)+....(3n) =(5) 325.18 2. Ventilation rate: main secondary other total m³ per hour heating heating Number of chimneys x 40 =(6a) 0 0 0 0 0 x 20 = = Number of open flues 0 0 0 0 0 (6b) x 10 =Number of intermittent fans (7a) 0 0 Number of passive vents x 10 =(7b) 0 0 Number of flueless gas fires x 40 =(7c)Λ Air changes per hour Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = ÷ (5) = 0 (8)If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) (9)0 Additional infiltration [(9)-1]x0.1 =(10)0 Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction 0 (11)if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 (12)0 If no draught lobby, enter 0.05, else enter 0 0 (13)Percentage of windows and doors draught stripped (14)0 $0.25 - [0.2 \times (14) \div 100] =$ Window infiltration 0 (15)(8) + (10) + (11) + (12) + (13) + (15) =Infiltration rate 0 (16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area (17)5 If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise (18) = (16)0.25 (18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered (19)Shelter factor $(20) = 1 - [0.075 \times (19)] =$ (20)0.85 Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ (21)0.21

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Monthl	y avera	ge wind	speed fr	om Tabl	e 7							
(22)m=	5.1	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7

Infiltration rate modified for monthly wind speed

Wind Factor (22a)m = (22	2)m ÷ 4										
(22a)m= 1.27 1.25	1.23 1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjusted infiltration rate (allowing for s	helter an	nd wind s	speed) =	(21a) x	(22a)m		-			
, <u> </u>	0.26 0.23	0.23	0.2	0.2	0.2	0.21	0.23	0.24	0.25		
Calculate effective air cha	•	the appli	cable ca	se							
If mechanical ventilatio										0.5	(23a)
If exhaust air heat pump usir							o) = (23a)			0.5	(23b)
If balanced with heat recover	•	•		,		,				0	(23c)
a) If balanced mechani	1	1	1		- 	ŕ	- 	 	1 ` `	_	(240)
(24a)m= 0 0	0 0	0	0	0	0	0	0	0	0		(24a)
b) If balanced mechani	cal ventilation	1 Without	neat red	covery (r	$\frac{\text{MV}}{0}$	0 m = (2)	2b)m + (2 1 0		0		(24b)
()	<u> </u>	<u> </u>					0	0	0		(240)
c) If whole house extra if (22b)m < 0.5 × (2							.5 × (23b))			
(24c)m= 0.52 0.52	0.51 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(24c)
d) If natural ventilation											
if (22b)m = 1, then	` 'ı `	b)m othe	· `	24d)m =	0.5 + [(2	2b)m² x	0.5]				
(24d)m= 0 0	0 0	0	0	0	0	0	0	0	0		(24d)
Effective air change ra	<u></u>	í ` ` 	í `	í `	 	`	1 .		1 . 1		(0=)
$(25)_{m} = 1 0.52 1 0.52 1$	0.51 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(25)
(25)m= 0.52 0.52	0.01		0.0	0.0	0.0						
3. Heat losses and heat			0.0	0.0	0.0						
` '	loss paramet	ter:	Net Ar A ,r	rea	U-valı W/m2	ue	A X U	<)	k-value kJ/m²·ł		<
3. Heat losses and heat ELEMENT Gross	loss paramet	ter:	Net Ar	rea m²	U-valı	ue	AXU	<) 		K kJ/K	<
3. Heat losses and heat ELEMENT Gross area (m	loss paramet	ter:	Net Ar A ,r	rea m²	U-valı W/m2	ue PK =	A X U (W/I	<) 		K kJ/K	<
3. Heat losses and heat ELEMENT Gross area (m	loss paramet	ter:	Net Ar A ,r	rea m² x 1 x1	U-valı W/m2	ue !K = 0.04] =	A X U (W/I 2.968	<) 		K kJ/K	(26)
3. Heat losses and heat ELEMENT Gross area (m Doors Windows Type 1	loss paramet	ter:	Net Ar A ,r 2.12	rea m² x 1 x1 x1	U-valı W/m2 1.4 /[1/(1.4)+	ue !K = 0.04] = 0.04] =	A X U (W/I 2.968 38.46	<) 		K kJ/K	(26)
3. Heat losses and heat ELEMENT Gross area (m. Doors Windows Type 1 Windows Type 2	loss paramet	er: ngs n²	Net Ar A ,r 2.12 29.01 14.37	rea m² x 1 x1 7 x1	U-valu W/m2 1.4 /[1/(1.4)+	ue !K = 0.04] = 0.04] =	A X U (W/I 2.968 38.46 19.05	<) 		K kJ/K	(26) (27) (27)
3. Heat losses and heat ELEMENT Gross area (m Doors Windows Type 1 Windows Type 2 Windows Type 3	loss paramet Openii ²) r	der: ngs n²	Net Ar A ,r 2.12 29.01 14.37 6.4	rea m² x 1 x1 x1 x1 x1 x1 x1 x1	U-valu W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	ue !K = 0.04] = 0.04] = 0.04] =	A X U (W/I 2.968 38.46 19.05 8.48	<)	kJ/m²∙ŀ	K kJ/K	(26) (27) (27) (27)
3. Heat losses and heat ELEMENT Gross area (m Doors Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1 120.86	loss paramet Openii ²) r	der: ngs n²	Net Ar A ,r 2.12 29.01 14.37 6.4 71.08	rea m² x 1 x1	U-valu W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	ue !K = 0.04] = 0.04] = 0.04] =	A X U (W/l 2.968 38.46 19.05 8.48 9.24	<)	kJ/m²∙ł	995.12	(26) (27) (27) (27) (27) (29)
3. Heat losses and heat ELEMENT Gross area (m. Doors Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1 120.86 Walls Type2 3.74	loss paramet Openin ²) r	der: ngs n²	Net Ar A ,r 2.12 29.01 14.37 6.4 71.08	rea m² x 1 x1 x1 x1 x1 x1 x1 x2 x1 x2 x1 x2 x2 x	U-valu W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.13 0.23	0.04] = 0.04] = 0.04] = = = = =	A X U (W/I 2.968 38.46 19.05 8.48 9.24 0.38	<)	kJ/m²⋅ł	995.12 22.68	(26) (27) (27) (27) (29) (29)
3. Heat losses and heat ELEMENT Gross area (m Doors Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1 120.86 Walls Type2 3.74 Walls Type3 37.39	loss paramet Openii ²) r 49.7 2.1	der: ngs n²	Net Ar A ,r 2.12 29.01 14.37 6.4 71.08 1.62 37.39	rea m² x 1 x1	U-valu W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.13 0.23	ue !K = 0.04] = 0.04] = 0.04] = = = = = = = =	A X U (W/I 2.968 38.46 19.05 8.48 9.24 0.38 7.63	<)	14 14 17	995.12 22.68 635.63	(26) (27) (27) (27) (29) (29) (29)
3. Heat losses and heat ELEMENT Gross area (m. Doors Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1 120.86 Walls Type2 3.74 Walls Type3 37.39 Roof Type1 55.5	Opening Opening	der: ngs n²	Net Ar A ,r 2.12 29.01 14.37 6.4 71.08 1.62 37.39	rea m² x 1 x1	U-valu W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.13 0.23 0.2	ue !K = 0.04] = 0.04] = 0.04] = = = = = = = = =	A X U (W/I 2.968 38.46 19.05 8.48 9.24 0.38 7.63 7.21	<)	14 14 17 9	995.12 22.68 635.63 499.5 54.45	(26) (27) (27) (27) (29) (29) (29) (30) (30)
3. Heat losses and heat ELEMENT Gross area (m. Doors Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1 120.86 Walls Type2 3.74 Walls Type3 37.39 Roof Type1 55.5 Roof Type2 6.05	Opening Opening	der: ngs n²	Net Ar A ,r 2.12 29.01 14.37 6.4 71.08 1.62 37.39 55.5 6.05	rea m² x 1 x1 x1 x1 x1 x2 x x x x x x x	U-valu W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.13 0.23 0.2	ue !K = 0.04] = 0.04] = 0.04] = = = = = = = = =	A X U (W/I 2.968 38.46 19.05 8.48 9.24 0.38 7.63 7.21	<)	14 14 17 9	995.12 22.68 635.63 499.5 54.45	(26) (27) (27) (27) (29) (29) (29) (30) (30) (31)
3. Heat losses and heat ELEMENT Gross area (m. Doors Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1 120.86 Walls Type2 3.74 Walls Type3 37.39 Roof Type1 55.5 Roof Type2 6.05 Total area of elements, m.	Opening Opening	der: ngs n²	Net Ar A ,r 2.12 29.01 14.37 6.4 71.08 1.62 37.39 55.5 6.05	rea m² x 1 x1	U-valu W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.13 0.23 0.2 0.14	ue !K = 0.04] = 0.04] = 0.04] = = = = = = = = =	A X U (W/l 2.968 38.46 19.05 8.48 9.24 0.38 7.63 7.21 0.85	<)	14 14 17 9	995.12 22.68 635.63 499.5 54.45	(26) (27) (27) (27) (29) (29) (29) (30) (30) (31) (32)
3. Heat losses and heat ELEMENT Gross area (m. Doors Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1 120.86 Walls Type2 3.74 Walls Type2 3.74 Walls Type3 37.39 Roof Type1 55.5 Roof Type2 6.05 Total area of elements, m. Party wall	Opening Opening	der: ngs n²	Net Ar A ,r 2.12 29.01 14.37 6.4 71.08 1.62 37.39 55.5 6.05 223.5 34.54 61.55	rea m² x 1 x1	U-valu W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.13 0.23 0.2 0.14	ue !K = 0.04] = 0.04] = 0.04] = = = = = = = = =	A X U (W/l 2.968 38.46 19.05 8.48 9.24 0.38 7.63 7.21 0.85	<)	14 14 17 9 9 20 40	995.12 22.68 635.63 499.5 54.45	(26) (27) (27) (27) (29) (29) (29) (30) (30) (31) (32) (32a)
3. Heat losses and heat ELEMENT Gross area (m. Doors Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1 120.86 Walls Type2 3.74 Walls Type3 37.39 Roof Type1 55.5 Roof Type1 6.05 Total area of elements, m. Party wall Party floor	Opening Opening	der: ngs n²	Net Ar A ,r 2.12 29.01 14.37 6.4 71.08 1.62 37.39 55.5 6.05 223.5 34.54 61.55	rea m² x 1 x1	U-valu W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.13 0.23 0.2 0.14	ue !K = 0.04] = 0.04] = 0.04] = = = = = = = = =	A X U (W/I 2.968 38.46 19.05 8.48 9.24 0.38 7.63 7.21 0.85	<)	14 14 17 9 9 20 40	995.12 22.68 635.63 499.5 54.45	(26) (27) (27) (27) (29) (29) (30) (30) (31) (32) (32a) (32c)
3. Heat losses and heat ELEMENT Gross area (m. Doors Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1 120.86 Walls Type2 3.74 Walls Type3 37.39 Roof Type1 55.5 Roof Type2 6.05 Total area of elements, m. Party wall Party floor Internal wall ** Internal floor	Opening Opening	der: ngs n²	Net Ar A ,r 2.12 29.01 14.37 6.4 71.08 1.62 37.39 55.5 6.05 223.5 34.54 61.55 214.3	rea m² x 1 x1 x1 x1 x1 x2 x x x x x x x x x x	U-valu W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.13 0.23 0.2 0.14	ue !K = 0.04] = 0.04] = 0.04] = = = = = = = = =	A X U (W/I 2.968 38.46 19.05 8.48 9.24 0.38 7.63 7.21 0.85	() <p< td=""><td>14 14 17 9 9 20 40 9</td><td>995.12 22.68 635.63 499.5 54.45 690.8 2462 1928.88 999</td><td>(26) (27) (27) (27) (29) (29) (30) (30) (31) (32) (32a) (32c) (32d)</td></p<>	14 14 17 9 9 20 40 9	995.12 22.68 635.63 499.5 54.45 690.8 2462 1928.88 999	(26) (27) (27) (27) (29) (29) (30) (30) (31) (32) (32a) (32c) (32d)
3. Heat losses and heat ELEMENT Gross area (m. Doors Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1 120.86 Walls Type2 3.74 Walls Type3 37.39 Roof Type1 55.5 Roof Type2 6.05 Total area of elements, m. Party wall Party floor Internal wall **	Opening Opening	der: ngs n²	Net Ar A ,r 2.12 29.01 14.37 6.4 71.08 1.62 37.39 55.5 6.05 223.5 34.54 61.55	rea m² x 1 x1 x1 x1 x1 x2 x x x x x x x x x x	U-valu W/m2 1.4 /[1/(1.4)+ /[1/(1.4)+ 0.13 0.23 0.2 0.14	ue !K = 0.04] = 0.04] = 0.04] = = = = = = = = =	A X U (W/I 2.968 38.46 19.05 8.48 9.24 0.38 7.63 7.21 0.85	<)	14 14 17 9 9 20 40	995.12 22.68 635.63 499.5 54.45	(26) (27) (27) (27) (29) (29) (30) (30) (31) (32) (32a) (32c)

(26)...(30) + (32) =

** include the areas on both sides of internal walls and partitions

Fabric heat loss, $W/K = S(A \times U)$

94.28

(33)

		Cm = S(, , , , ,						((20)	.(30) + (32)	-) · (02u).	(020)	8787.56	(34)
Therm	al mass	parame	ter (TMF	P = Cm ÷	TFA) in	ı kJ/m²K			= (34)	÷ (4) =			75.08	(35)
	•		ere the de tailed calci		constructi	ion are no	t known pr	ecisely the	e indicative	values of	TMP in Ta	able 1f		
Therm	al bridge	es : S (L	x Y) cal	culated i	using Ap	pendix l	<						26.74	(36)
if details	of therma	al bridging	are not kn	own (36) =	= 0.15 x (3	1)						'		
Total fa	abric he	at loss							(33) +	(36) =			121.01	(37)
Ventila	tion hea	at loss ca	alculated	monthly	y				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	55.9	55.33	54.76	53.65	53.65	53.65	53.65	53.65	53.65	53.65	53.65	53.65		(38)
Heat tr	ansfer o	oefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	176.91	176.34	175.77	174.67	174.67	174.67	174.67	174.67	174.67	174.67	174.67	174.67		
										•	Sum(39) ₁ .	12 /12=	175.09	(39)
		· ·	HLP), W/				1	1	·	= (39)m ÷	1		l	
(40)m=	1.51	1.51	1.5	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49		
Numbe	er of day	s in moi	nth (Tab	le 1a)					/	Average =	Sum(40) _{1.}	12 /12=	1.5	(40)
rtarribt	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
()														
1 Wa	ter heat	ing ener	rgy requi	rement:								kWh/ye	ar:	
4. 000	ilei Ileai	ing ener	igy requi	rement.								KVVII/ye	zai.	
		ipancy, l									2	85		(42)
			+ 1.76 X	[1 - exp	(-0.0003	849 x (TF	FA -13.9)2)] + 0.0	0013 x (ΓFA -13.			l	, ,
if TF Annua	A £ 13.9 I averag	9, N = 1 e hot wa	ater usaç	je in litre	s per da	ny Vd,av	erage =	(25 x N)	+ 36		9)	1.92		(43)
if TF Annua Reduce	A £ 13.9 I averag	9, N = 1 e hot wa al average	ater usaç	ge in litre	es per da 5% if the d	ay Vd,av Iwelling is	erage = designed t	(25 x N)	•		9)			
if TF Annua Reduce	A £ 13.9 I averag	9, N = 1 e hot wa al average	ater usaç hot water	ge in litre usage by a day (all w	es per da 5% if the d rater use, F	ay Vd,av Iwelling is	erage = designed t	(25 x N) to achieve	+ 36 a water us		9)			
if TF Annua Reduce not more	A £ 13.9 I averag the annua e that 125 Jan	e hot wa al average litres per p	ater usaç hot water person per	ge in litre usage by day (all w	es per da 5% if the d vater use, I	ny Vd,av Iwelling is not and co	erage = designed t ld) Jul	(25 x N) to achieve	+ 36	se target o	9) 10°	1.92		
if TF Annua Reduce not more	A £ 13.9 I averag the annua e that 125 Jan	e hot wa al average litres per p	ater usag hot water person per Mar	ge in litre usage by day (all w	es per da 5% if the d vater use, I	ny Vd,av Iwelling is not and co	erage = designed t ld) Jul	(25 x N) to achieve	+ 36 a water us	se target o	9) 10°	1.92		
if TF Annua Reduce not more Hot wate (44)m=	A £ 13.9 I average the annual at that 125 Jan er usage in	e hot wa al average litres per p Feb n litres per 108.03	hot water person per Mar day for ea	ge in litre usage by a day (all w Apr ach month	es per da 5% if the d vater use, I May Vd,m = fac 95.8	ay Vd,av lwelling is not and co Jun ctor from 1	erage = designed to ld) Jul Table 1c x 91.72	(25 x N) to achieve Aug (43) 95.8	+ 36 a water us Sep 99.88	Oct 103.95 Fotal = Su	9) Nov 108.03 m(44) ₁₁₂ =	1.92 Dec 112.11	1222.98	
if TF Annua Reduce not more Hot wate (44)m=	A £ 13.9 I average the annual at that 125 Jan er usage in	e hot wa al average litres per p Feb n litres per 108.03	hot water person per Mar day for ea	ge in litre usage by a day (all w Apr ach month	es per da 5% if the d vater use, I May Vd,m = fac 95.8	ay Vd,av lwelling is not and co Jun ctor from 1	erage = designed to ld) Jul Table 1c x 91.72	(25 x N) to achieve Aug (43) 95.8	+ 36 a water us Sep 99.88	Oct 103.95 Fotal = Su	9) Nov 108.03 m(44) ₁₁₂ =	1.92 Dec 112.11	1222.98	(43)
if TF Annua Reduce not more Hot wate (44)m=	A £ 13.9 I average the annual at that 125 Jan er usage in	e hot wa al average litres per p Feb n litres per 108.03	hot water person per Mar day for ea	ge in litre usage by a day (all w Apr ach month	es per da 5% if the d vater use, I May Vd,m = fac 95.8	ay Vd,av lwelling is not and co Jun ctor from 1	erage = designed to ld) Jul Table 1c x 91.72	(25 x N) to achieve Aug (43) 95.8	+ 36 a water us Sep 99.88	Oct 103.95 Fotal = Su	9) Nov 108.03 m(44) ₁₁₂ =	1.92 Dec 112.11	1222.98	(43)
if TF Annua Reduce not more Hot wate (44)m= Energy (45)m=	A £ 13.9 I average the annual that 125 Jan er usage in 112.11 content of 166.25	P, N = 1 e hot wa al average litres per p Feb n litres per 108.03 hot water 145.4	hot water person per Mar day for ea 103.95	ge in litre usage by a day (all w Apr ach month 99.88 culated mo	es per da 5% if the de tater use, l' May Vd,m = fact 95.8 onthly = 4.	ay Vd,av lwelling is not and co Jun ctor from 7 91.72 190 x Vd,r	erage = designed to ld) Jul Table 1c x 91.72 m x nm x E 100.37	(25 x N) to achieve Aug (43) 95.8 07m / 3600 115.17	+ 36 a water us Sep 99.88 0 kWh/more	Oct 103.95 Total = Sunth (see Tail 135.83	Nov 108.03 m(44) ₁₁₂ = ables 1b, 1	1.92 Dec 112.11 c, 1d) 161	1222.98 1603.52	(43)
if TF Annua Reduce not more Hot wate (44)m= Energy (45)m=	A £ 13.9 I average the annual that 125 Jan er usage in 112.11 content of 166.25	P, N = 1 e hot wa al average litres per p Feb n litres per 108.03 hot water 145.4	Mar day for ea 103.95 used - cale	ge in litre usage by a day (all w Apr ach month 99.88 culated mo	es per da 5% if the de tater use, l' May Vd,m = fact 95.8 onthly = 4.	ay Vd,av lwelling is not and co Jun ctor from 7 91.72 190 x Vd,r	erage = designed to ld) Jul Table 1c x 91.72 m x nm x E 100.37	(25 x N) to achieve Aug (43) 95.8 07m / 3600 115.17	+ 36 a water us Sep 99.88 0 kWh/more	Oct 103.95 Total = Sunth (see Tail 135.83	Nov 108.03 m(44) ₁₁₂ = ables 1b, 1 148.26	1.92 Dec 112.11 c, 1d) 161		(43)
if TF Annua Reduce not more Hot wate (44)m= Energy (45)m= If instant (46)m= Water	A £ 13.9 I average the annual enthal 125 Jan er usage in 112.11 content of 166.25 taneous was 24.94 storage	e hot wa el average litres per p Feb n litres per 108.03 hot water 145.4 vater heatin 21.81	Mar day for ea 103.95 used - cal 150.04 ng at point 22.51	ge in litre usage by a day (all w Apr ach month 99.88 culated mo 130.81 of use (no	es per da 5% if the da 5% if th	y Vd,av lwelling is not and co Jun ctor from 7 91.72 190 x Vd,r 108.31 r storage),	erage = designed to ld) Jul Table 1c x 91.72 m x nm x E 100.37 enter 0 in 15.06	(25 x N) to achieve Aug (43) 95.8 07m / 3600 115.17 boxes (46) 17.28	+ 36 a water us Sep 99.88 116.55 17.48	Oct 103.95 Total = Sunth (see Tail 135.83) Total = Sunth 20.37	Nov 108.03 m(44) ₁₁₂ = ables 1b, 1 148.26 m(45) ₁₁₂ =	1.92 Dec 112.11 c, 1d) 161		(43) (44) (45)
if TF Annua Reduce not more Hot wate (44)m= Energy (45)m= If instant (46)m= Water	A £ 13.9 I average the annual enthal 125 Jan er usage in 112.11 content of 166.25 taneous was 24.94 storage	e hot wa el average litres per p Feb n litres per 108.03 hot water 145.4 vater heatin 21.81	Mar day for ea 103.95 used - cal 150.04 ng at point 22.51	ge in litre usage by a day (all w Apr ach month 99.88 culated mo 130.81 of use (no	es per da 5% if the da 5% if th	y Vd,av lwelling is not and co Jun ctor from 7 91.72 190 x Vd,r 108.31 r storage),	erage = designed to ld) Jul Table 1c x 91.72 m x nm x E 100.37 enter 0 in 15.06	(25 x N) to achieve Aug (43) 95.8 07m / 3600 115.17 boxes (46) 17.28	+ 36 a water us Sep 99.88 116.55 10 to (61)	Oct 103.95 Total = Sunth (see Tail 135.83) Total = Sunth 20.37	Nov 108.03 m(44) ₁₁₂ = ables 1b, 1 148.26 m(45) ₁₁₂ = 22.24	1.92 Dec 112.11 c, 1d) 161		(43) (44) (45)
if TF Annua Reduce not more Hot wate (44)m= Energy (45)m= If instant (46)m= Water Storag If comm	A £ 13.9 I average the annual that 125 I an are usage in 112.11 I acontent of 166.25 I anneous was 14.94 I storage e volume would be worked to the storage annual that the storage annual that the storage annual that the storage annual that the storage and the storage annual that the storage and the storage annual that the storage and the storage annual that the storage and the sto	P, N = 1 e hot wa al average litres per l litres per 108.03 hot water 145.4 vater heatil 21.81 loss: e (litres) eating a	Mar day for ea 103.95 used - call 150.04 ng at point 22.51 includinated no tal	ge in litre usage by a day (all w Apr ach month 99.88 culated mo 130.81 of use (no 19.62 ng any so nk in dw	es per da 5% if the d rater use, I May Vd,m = fac 95.8 125.52 hot water 18.83 plar or W relling, e	ay Vd,av lwelling is not and co Jun ctor from 7 91.72 190 x Vd,r 108.31 storage), 16.25 /WHRS nter 110	erage = designed to ld) Jul Table 1c x 91.72 m x nm x E 100.37 enter 0 in 15.06 storage litres in	(25 x N) to achieve Aug (43) 95.8 07m / 3600 115.17 boxes (46 17.28 within sa (47)	+ 36 a water us Sep 99.88 0 kWh/mon 116.55 17.48 ame vess	Oct 103.95 Total = Sunth (see Tail 135.83) Total = Sunth (see Tail 20.37) sel	Nov 108.03 m(44) ₁₁₂ = 2bles 1b, 1 148.26 m(45) ₁₁₂ = 22.24	1.92 Dec 112.11 c, 1d) 161 24.15		(43) (44) (45) (46)
if TF Annua Reduce not more Hot wate (44)m= Energy (45)m= If instant (46)m= Water Storag If commothered	A £ 13.9 I average the annual that 125 Jan er usage in 112.11 content of 166.25 taneous w 24.94 storage e volume munity here.	e hot wa el hot wa al average litres per l Feb n litres per 108.03 hot water 145.4 vater heatin 21.81 loss: e (litres) eating a p stored	Mar day for ea 103.95 used - call 150.04 ng at point 22.51 includinated no tal	ge in litre usage by a day (all w Apr ach month 99.88 culated mo 130.81 of use (no 19.62 ng any so nk in dw	es per da 5% if the d rater use, I May Vd,m = fac 95.8 125.52 hot water 18.83 plar or W relling, e	ay Vd,av lwelling is not and co Jun ctor from 7 91.72 190 x Vd,r 108.31 storage), 16.25 /WHRS nter 110	erage = designed to ld) Jul Table 1c x 91.72 m x nm x E 100.37 enter 0 in 15.06 storage litres in	(25 x N) to achieve Aug (43) 95.8 07m / 3600 115.17 boxes (46 17.28 within sa (47)	+ 36 a water us Sep 99.88 116.55 17.48	Oct 103.95 Total = Sunth (see Tail 135.83) Total = Sunth (see Tail 20.37) sel	Nov 108.03 m(44) ₁₁₂ = 2bles 1b, 1 148.26 m(45) ₁₁₂ = 22.24	1.92 Dec 112.11 c, 1d) 161 24.15		(43) (44) (45) (46)
if TF Annua Reduce not more Hot wate (44)m= Energy (45)m= If instant (46)m= Water Storag If commother Water	A £ 13.9 I average the annual that 125 Jan ar usage in 112.11 content of 166.25 taneous wastorage e volumemunity havise if no storage	e hot wa al average litres per l Feb n litres per 108.03 hot water 145.4 vater heatil 21.81 loss: e (litres) leating al o stored loss:	Mar day for ea 103.95 used - calc 150.04 22.51 includinate to talchot water	ge in litre usage by a day (all w Apr ach month 99.88 culated mo 130.81 of use (no 19.62 ng any so nk in dw er (this in	es per da 5% if the d rater use, I May Vd,m = fac 95.8 125.52 hot water 18.83 plar or W relling, e	ay Vd,av lwelling is not and co Jun ctor from 7 91.72 190 x Vd,r 108.31 storage), 16.25 /WHRS nter 110 nstantar	erage = designed to ld) Jul Table 1c x 91.72 m x nm x E 100.37 enter 0 in 15.06 storage 0 litres in neous co	(25 x N) to achieve Aug (43) 95.8 07m / 3600 115.17 boxes (46 17.28 within sa (47)	+ 36 a water us Sep 99.88 0 kWh/mon 116.55 17.48 ame vess	Oct 103.95 Total = Sunth (see Tail 135.83) Total = Sunth (see Tail 20.37) sel	Nov 108.03 m(44) ₁₁₂ = ables 1b, 1 148.26 m(45) ₁₁₂ = 22.24	1.92 Dec 112.11 c, 1d) 161 24.15		(43) (44) (45) (46) (47)
if TF Annua Reduce not more Hot wate (44)m= Energy (45)m= If instant (46)m= Water Storag If commother Water a) If more	A £ 13.9 I average the annual that 125 I Jan Per usage in 112.11 Content of 166.25 taneous wastorage e volume munity havise if no storage nanufact	e hot wa e hot wa al average litres per l Feb n litres per 108.03 hot water 145.4 vater heatin 21.81 loss: e (litres) eating a o stored loss: urer's de	Mar day for ea 103.95 used - call 150.04 ng at point 22.51 includir and no tal hot water	ge in litre usage by a day (all w Apr ach month 99.88 culated mo 130.81 of use (no 19.62 ag any so ank in dw er (this in	es per da 5% if the d rater use, I May Vd,m = fac 95.8 125.52 hot water 18.83 plar or W relling, e	ay Vd,av lwelling is not and co Jun ctor from 7 91.72 190 x Vd,r 108.31 storage), 16.25 /WHRS nter 110 nstantar	erage = designed to ld) Jul Table 1c x 91.72 m x nm x E 100.37 enter 0 in 15.06 storage 0 litres in neous co	(25 x N) to achieve Aug (43) 95.8 07m / 3600 115.17 boxes (46 17.28 within sa (47)	+ 36 a water us Sep 99.88 0 kWh/mon 116.55 17.48 ame vess	Oct 103.95 Total = Sunth (see Tail 135.83) Total = Sunth (see Tail 20.37) sel	Nov 108.03 m(44) ₁₁₂ = ables 1b, 1 148.26 m(45) ₁₁₂ = 22.24	1.92 Dec 112.11 c, 1d) 161 24.15		(43) (44) (45) (46) (47)
if TF Annua Reduce not more Hot wate (44)m= Energy (45)m= If instant (46)m= Water Storag If commotherw Water a) If m Tempe	A £ 13.9 I average the annual that 125 I an are usage in 112.11 I annual that 125 I	e hot wa all average litres per per litres per per litres per litr	Mar day for ea 103.95 used - calc 150.04 22.51 includinate to talchot water	ge in litre usage by a day (all w Apr ach month 99.88 culated mo 130.81 of use (no 19.62 ag any so ank in dw er (this in oss facto 2b	es per da 5% if the d fater use, I May Vd,m = fat 95.8 125.52 hot water 18.83 color or W velling, e faciludes in per is known	ay Vd,av lwelling is not and co Jun ctor from 7 91.72 190 x Vd,r 108.31 storage), 16.25 /WHRS nter 110 nstantar	erage = designed to ld) Jul Table 1c x 91.72 100.37 enter 0 in 15.06 storage theous conditions conditions conditions conditions conditions conditions are set to literate literat	(25 x N) to achieve Aug (43) 95.8 07m / 3600 115.17 boxes (46) 17.28 within sa (47)	+ 36 a water us Sep 99.88 116.55 10 to (61) 17.48 ame vess ers) ente	Oct 103.95 Total = Sunth (see Tail 135.83) Total = Sunth (see Tail 20.37) sel	9) Nov 108.03 m(44) ₁₁₂ = ables 1b, 1 148.26 m(45) ₁₁₂ = 22.24	1.92 Dec 112.11 c, 1d) 161 24.15		(43) (44) (45) (46) (47)

Hot water storage			le 2 (kW	h/litre/da	ay)					0		(51)
If community heati Volume factor fron	_	ion 4.3								_	I	(EQ)
Temperature factor		e 2h								0		(52) (53)
•			oor			(47) v (51)	\ v (52) v (53) -				
Energy lost from w Enter (50) or (54)	•	e, Kvvii/y	eai			(47) X (51)) x (52) x (55) –		0		(54) (55)
Water storage loss		for each	month			((56)m = (55) × (41)ı	m		0		(55)
		_				· · · · ·	, , ,				ı	(EC)
(56)m= 0 If cylinder contains ded	0 cated solar st	0 orage, (57)	0 m = (56)m	0 x [(50) – (0 H11)] ÷ (5	0 0), else (5	0 7)m = (56)	0 m where (0 H11) is fro	0 om Append	ix H	(56)
	0		0	0	0	0	0	0	0	0		(57)
	/annual) fr	om Toble								0		(58)
Primary circuit loss Primary circuit loss	,			59\m = ((58) ± 36	S5 × (/11)	m			U		(50)
(modified by fac			,	•	` '	, ,		r thermo	stat)			
·	0	0	0	0	0	0	0	0	0	0		(59)
	tad for agai	h manth	(61)m =	(60) · 20	L	\			<u> </u>		l	
Combi loss calcula		1	1	1	1	T	24.50	05.77	24.00	25.07	I	(61)
(61)m= 35.89 32		34.61	35.71	34.5	35.61	35.67	34.56	35.77	34.68	35.87	 	(61)
Total heat required						`´			` 	`	(59)m + (61)m	
(62)m= 202.14 17		165.43	161.23	142.81	135.97	150.85	151.11	171.6	182.95	196.87		(62)
Solar DHW input calcu								r contribut	ion to wate	er heating)		
(add additional line					· ·	i 					I	(00)
(**)	0	0	0	0	0	0	0	0	0	0		(63)
Output from water	heater										•	
(64)m= 202.14 17	7.8 185.87	165.43	161.23	142.81	135.97	150.85	151.11	171.6	182.95	196.87		7
						Outp	out from wa	ater heate	r (annual)₁	12	2024.61	(64)
Heat gains from w	ater heating	ı, kWh/m	onth 0.2	5 ′ [0.85	× (45)m	+ (61)m	1] + 0.8 >	(46)m	+ (57)m	+ (59)m]	
(65)m= 64.25 56	45 58.85	52.15	50.66	44.64	42.27	47.21	47.39	54.1	57.97	62.5		(65)
include (57)m in	calculation	of (65)m	only if c	ylinder i	s in the	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Internal gains	(see Table	5 and 5a):									
Metabolic gains (T	able 5), Wa	tts										
Jan F	eb Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 171.07 17°	.07 171.07	171.07	171.07	171.07	171.07	171.07	171.07	171.07	171.07	171.07		(66)
Lighting gains (cal	culated in A	ppendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5				•	
(67)m= 62.7 55	69 45.29	34.29	25.63	21.64	23.38	30.39	40.79	51.79	60.45	64.44		(67)
Appliances gains (calculated i	n Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5	Į.		ı	
(68)m= 419.88 424		- ' ' ' - '	360.38	332.65	314.12	309.76	320.74	344.12	373.62	401.36		(68)
Cooking gains (ca	culated in A	Appendix	L. eguat	tion L15	or L15a), also se	ee Table	5	<u> </u>		l	
(69)m= 54.96 54		54.96	54.96	54.96	54.96	54.96	54.96	54.96	54.96	54.96		(69)
Pumps and fans g												` '
· -	3	3	3	3	3	3	3	3	3	3		(70)
					Ů			Ü	Ů			(. 0)
Losses e.g. evapo (71)m= -114.05 -114	``	-	- ' `	· · · · · · · · · · · · · · · · · · ·	-114.05	-114.05	-114.05	-114.05	-114.05	-114.05		(71)
			-114.05	-114.05	-114.05	-114.05	-114.05	-114.05	-114.05	-114.05		(1-1)
Water heating gair	`		00.00		50.00	00.40	05.00	70 -0	00.51	04.64	[(70)
(72)m= 86.36	4 79.09	72.43	68.09	62	56.82	63.46	65.82	72.72	80.51	84.01		(72)

Total i	Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m$													
(73)m=	683.92	678.91	652.63	611.58	569.09	531.26	509.3	518.6	542.34	583.61	629.57	664.79	((73)
6. Solar gains:														

(73)m= 6	83.92	678.91	652.6	3	611.58	569.09	9 5	31.26	509.3	518	3.6	542.34	583.6	1 629.57	664	.79		(73)
6. Solar	gains	s:																
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.																		
Orientati			actor		Area			Flu				g_ 		FF			Gains	
	_ I	able 6d			m²		_	ıa	ble 6a	_	18	able 6b		Table 6c		_	(W)	
Northeast		0.77		X	29.	01	Х		11.28	X		0.4	×	0.8		=	72.59	(75)
Northeast		0.77		X	29.	01	Х	2	22.97	Х		0.4	X	0.8		=	147.75	(75)
Northeast	<u> </u>	0.77		X	29.	01	Х		11.38	Х		0.4	X	0.8		=	266.2	(75)
Northeast		0.77		X	29.	01	Х	6	67.96	Х		0.4	×	0.8		=	437.18	(75)
Northeast		0.77		X	29.	01	Х	9	91.35	Х		0.4	×	0.8		=	587.65	(75)
Northeast	느	0.77		X	29.	01	Х	9	97.38	Х		0.4	Х	0.8		=	626.5	(75)
Northeast	<u> </u>	0.77		X	29.	01	Х		91.1	Х		0.4	X	0.8		=	586.08	(75)
Northeast		0.77		X	29.	01	Х		72.63	Х		0.4	X	0.8		=	467.23	(75)
Northeast	<u> </u>	0.77		X	29.	01	Х		50.42	Х		0.4	X	0.8		=	324.37	(75)
Northeast		0.77		X	29.	01	Х	2	28.07	Х		0.4	X	0.8		=	180.56	(75)
Northeast		0.77		X	29.	01	Х		14.2	Х		0.4	X	0.8		=	91.33	(75)
Northeast	<u> </u>	0.77		X	29.	01	Х		9.21	Х		0.4	×	0.8		=	59.28	(75)
Southeas		0.77		X	6.4	4	Х	3	36.79	Х		0.4	×	0.8		=	52.22	(77)
Southeas		0.77		X	6.4	4	Х	6	62.67	Х		0.4	X	0.8		=	88.95	(77)
Southeas		0.77		X	6.4	4	Х	3	35.75	Х		0.4	X	0.8		=	121.71	(77)
Southeas		0.77		X	6.4	4	Х	1	06.25	Х		0.4	X	0.8		=	150.8	(77)
Southeas	<u> </u>	0.77		X	6.4	4	Х	1	19.01	Х		0.4	X	0.8		=	168.91	(77)
Southeas	<u> </u>	0.77		X	6.4	4	Х	1	18.15	Х		0.4	×	0.8		=	167.69	(77)
Southeas		0.77		X	6.4	1	Х	1	13.91	Х		0.4	×	0.8		=	161.67	(77)
Southeas		0.77		X	6.4	1	Х	1	04.39	Х		0.4	X	0.8	_	=	148.16	(77)
Southeas	느	0.77		X	6.4	1	Х	9	92.85	Х		0.4	×	0.8	_	=	131.78	(77)
Southeas		0.77		X	6.4	1	Х	(69.27	Х		0.4	X	0.8	_	=	98.31	(77)
Southeas		0.77	_	X	6.4	1	Х		14.07	Х		0.4	X	0.8	_	=	62.55	(77)
Southeas		0.77		X	6.4	1	Х	3	31.49	Х		0.4	×	0.8	_	=	44.69	(77)
Northwes		0.77		X	14.	37	Х	1	11.28	Х		0.4	×	0.8	_	=	35.96	(81)
Northwes		0.77	_	X	14.	37	Х	2	22.97	Х		0.4	X	0.8	_	=	73.19	(81)
Northwes	<u> </u>	0.77		X	14.	37	Х		41.38	Х		0.4	×	0.8		=	131.86	(81)
Northwes		0.77		X	14.	37	Х	6	67.96	Х		0.4	×	0.8		=	216.55	(81)
Northwes	<u> </u>	0.77		X	14.	37	Х	9	91.35	Х		0.4	X	0.8		=	291.09	(81)
Northwes		0.77		X	14.	37	Х	9	97.38	Х		0.4	X	0.8		=	310.33	(81)
Northwes		0.77		X	14.	37	x		91.1	х		0.4	X	0.8		=	290.31	(81)
Northwes	느	0.77		X	14.	37	х	7	72.63	х		0.4	X	0.8		=	231.44	(81)
Northwes		0.77		X	14.	37	х		50.42	х		0.4	X	0.8		=	160.68	(81)
Northwes	t _{0.9x}	0.77		X	14.	37	Х	2	28.07	X		0.4	Х	0.8		=	89.44	(81)

Northwest 0	.9x 0.77	· x	14.	37	X	1	14.2	1 x [0.4	T x	Г	0.8		45.24	(81)
Northwest 0			14.		X	_	9.21) 		0.4	$\frac{1}{x}$	F	0.8	╡ ₌	29.36	(81)
110141110010	0.77	^	14.	37	^		7.21	l ^ L		0.4	^	L	0.0		29.30	(01)
ĭ—	s in watts, c	1			$\overline{}$				$\overline{}$	m(74)m .		\neg	100.10	400.00	٦	(00)
` ′	0.76 309.89	519.77	804.53	1047.65		104.52	1038.06	846.8	32	616.83	368.	31	199.12	133.33		(83)
	= internal		<u> </u>	<u> </u>	·							_			7	
(84)m= 844	1.68 988.8	1172.39	1416.11	1616.74	16	35.78	1547.36	1365.	42	1159.16	951.	93	828.69	798.12		(84)
7. Mean i	nternal tem	perature	(heating	season	1)											
Temperat	ure during	heating p	eriods ir	n the livi	ng	area f	rom Tab	ole 9.	Th1	l (°C)					21	(85)
·	factor for g				_					,						
	an Feb	Mar	Apr	May	T	Jun	Jul	Au	пТ	Sep	Od	ıt	Nov	Dec	1	
(86)m= 0.9		0.87	0.78	0.66	١.	0.53	0.42	0.48	_	0.67	0.84	$\overline{}$	0.91	0.94	1	(86)
(80)111- 0.5	95 0.91	0.07	0.76	0.00	L	0.55	0.42	0.40	,	0.07	0.04	†	0.91	0.94		(00)
Mean inte	ernal tempe	rature in	living ar	ea T1 (f	ollo	w ste	ps 3 to 7	in Ta	able	9c)					_	
(87)m= 17	.62 17.97	18.6	19.41	20.13		20.6	20.82	20.7	6	20.33	19.4	4	18.37	17.57		(87)
Temperat	ure during	heating p	eriods ir	n rest of	dw	/ellina	from Ta	ble 9	. Th	2 (°C)						
(88)m= 19		19.69	19.69	19.69	_	19.69	19.69	19.6		19.69	19.6	9	19.69	19.69	1	(88)
` ′	<u> </u>											_			_	
	factor for g	1			_	<u> </u>		r –	_			. 1			7	(00)
(89)m= 0.9	92 0.9	0.85	0.75	0.61	_ '	0.45	0.32	0.37		0.6	0.8	1	0.9	0.93		(89)
Mean inte	ernal tempe	rature in	the rest	of dwell	ing	T2 (fo	ollow ste	ps 3	to 7	in Tabl	e 9c)					
(90)m= 16	.65 17	17.61	18.39	19.05	1	19.46	19.62	19.5	9	19.25	18.4	1	17.41	16.61]	(90)
					_					f	LA = L	ivin	g area ÷ (4	1) =	0.22	(91)
N.A			41	. 1	II!	\ f1	Δ Τ4	. /4	.	A \ TO						
	ernal tempe	- `			_				_		40.0		47.00	40.00	7	(02)
(92)m= 16		17.83	18.62	19.29	1	19.71	19.88	19.8		19.49	18.6		17.62	16.82	J	(92)
· · · · · - · ·	ustment to	1			_				\neg		_	\neg	4- 4-	40.0=	7	(02)
(93)m= 16		17.68	18.47	19.14	1	19.56	19.73	19.7		19.34	18.4	8	17.47	16.67		(93)
	heating req															
	the mean in				ned	l at ste	ep 11 of	Table	9b	, so tha	t Ti,n	1=(7	76)m an	d re-cal	culate	
	tion factor f	1			Т	1	led	۸.,		0		. 1	Nim	D	1	
	an Feb	Mar	Apr	May	L	Jun	Jul	Au	g	Sep	Od	ા	Nov	Dec		
	factor for g	_		0.50	Τ.	0.44	0.00	0.0	,	0.50	0.7	,	0.07	0.0	7	(94)
(94)m= 0.		0.81	0.71	0.58	Ľ	0.44	0.32	0.37		0.58	0.7	′	0.87	0.9		(94)
	ins, hmGm				Τ_	05.40	10= 11			07101			- 400		7	(05)
	854.56	947.92	1008.14	945.66	_	25.13	497.44	507.	6	671.21	733.	86	718.3	721.36		(95)
	verage ext	1			_							_			7	
(96)m= 4.		6.5	8.9	11.7	_	14.6	16.6	16.4		14.1	10.0	3	7.1	4.2		(96)
	rate for me				_	า , W =	=[(39)m :	x [(93)m_	- (96)m]				7	
	6.72 2144.51				_	66.49	547.33	575.8		915.54	1375		1811.64	2178.23		(97)
Space he	ating requir	ement fo	r each n	nonth, k	Wh	/mont	h = 0.02	24 x [(97)r	m – (95)m] x	(41	l)m		_	
(98)m= 107	71.7 866.84	756.61	477.71	262.83		0	0	0		0	477.	55	787.21	1083.91		
	-	-	-	-				Т	otal	per year	(kWh/y	/ear) = Sum(9	8) _{15,912} =	5784.35	(98)
Space he	ating requir	ement in	kWh/m²	² /vear											49.42	(99)
										1154					70.42	
	requireme	nts – Indi	vidual h	eating s	yst	ems ir	ncluding	micro	o-Cl	HP)						
Space he	•	. 1. 6				4	4									
Fraction	of space he	at from s	econdar	y/supple	eme	entary	system								0	(201)

Fraction of space heat from main system(s)			(202) = 1	- (201) =				1	(202)
Fraction of total heating from main system 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficiency of main space heating system 1								90	(206)
Efficiency of secondary/supplementary heatin	g system	n, %						0	(208)
Jan Feb Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	– ar
Space heating requirement (calculated above	i 							Ī	
1071.7 866.84 756.61 477.71 262.83	0	0	0	0	477.55	787.21	1083.91		
$(211)m = \{[(98)m \times (204)] \} \times 100 \div (206)$					500.00	074.07	4004.04	1	(211)
1190.78 963.16 840.68 530.79 292.03	0	0	0 Tota	0 II (kWh/yea	530.62 ar) =Sum(3	874.67	1204.34	6427.06	(211)
Space heating fuel (secondary), kWh/month			7010	(1.17711/1/300	ar) Garri	- ' '/15,101:	2	0427.00	(211)
$= \{[(98) \text{m x } (201)]\} \times 100 \div (208)$									
(215)m= 0 0 0 0 0	0	0	0	0	0	0	0		
		•	Tota	l (kWh/yea	ar) =Sum(2	215) _{15,101}	=	0	(215)
Water heating									
Output from water heater (calculated above) 202.14 177.8 185.87 165.43 161.23	142.81	135.97	150.85	151.11	171.6	182.95	196.87]	
Efficiency of water heater	142.01	100.07	100.00	101.11	17 1.0	102.00	100.07	86.7	(216)
(217)m= 89.46 89.42 89.33 89.13 88.72	86.7	86.7	86.7	86.7	89.1	89.36	89.48	00	(217)
Fuel for water heating, kWh/month		<u> </u>	l	l	l	ı		l	
$(219)m = (64)m \times 100 \div (217)m$	104.74	450.00	470.00	474.00	400.50	204.72	220.02	1	
(219)m= 225.95 198.84 208.07 185.61 181.74	164.71	156.83	173.99 Tota	174.29 Il = Sum(2	192.58 19a) =	204.73	220.03	2287.36	(219)
Annual totals				(-		Wh/yeaı	r	kWh/year	」 ` ′
Space heating fuel used, main system 1							'	6427.06	7
Water heating fuel used								2287.36	ī .
Electricity for pumps, fans and electric keep-ho	t								_
mechanical ventilation - balanced, extract or p		nput fron	n outside	9			94.42]	(230a)
central heating pump:		.,		_			30		(230c)
]	
boiler with a fan-assisted flue				- f (000 -)	(000)		45		(230e)
Total electricity for the above, kWh/year			sum	of (230a).	(230g) =			169.42	(231)
Electricity for lighting								442.92	(232)
Electricity generated by PVs								-745.28	(233)
10a. Fuel costs - individual heating systems:									
	Fu kW	el /h/year			Fuel P (Table			Fuel Cost £/year	
Space heating - main system 1	(21	1) x			3.4	18	x 0.01 =	223.66	(240)
Space heating - main system 2	(21:	3) x					x 0.01 =	0	(241)
	,	_,					0.04		」 ` ′

(215) x

(219)

Space heating - secondary

Water heating cost (other fuel)

79.6

(242)

(247)

x 0.01 =

x 0.01 =

13.19

3.48

Pumps, fans and electric keep-hot		(231)		13.19	x 0.01 =	22.35	(249)
(if off-peak tariff, list each of (230a) to (23 Energy for lighting		ately as applicable an	d apply	fuel price acc	ording to 7	Table 12a	(250)
Additional standing charges (Table 12)				13.19			
Additional standing charges (Table 12)					_	120	(251)
		one of (233) to (235) x)		13.19	x 0.01 =	0	(252)
Appendix Q items: repeat lines (253) and	` '						7,055
Total one gy coot	. , , ,	+ (250)(254) =				504.03	(255)
11a. SAP rating - individual heating syst	ems						_
Energy cost deflator (Table 12)						0.42	(256)
	(255) x (256)] ÷ [(4) + 45.0] =				1.31	(257)
SAP rating (Section 12)						81.78	(258)
12a. CO2 emissions – Individual heating	j systems i	ncluding micro-CHP					
		Energy kWh/year		Emission fa		Emissions kg CO2/yea	ır
Space heating (main system 1)		(211) x		0.216	=	1388.25	(261)
Space heating (secondary)		(215) x		0.519	=	0	(263)
Water heating		(219) x		0.216	=	494.07	(264)
Space and water heating		(261) + (262) + (263) + (2	64) =		-	1882.32	(265)
Electricity for pumps, fans and electric ke	ep-hot	(231) x		0.519	=	87.93	(267)
Electricity for lighting		(232) x		0.519	-] =	229.88	(268)
Energy saving/generation technologies Item 1				0.519	·] =	-386.8	(269)
Total CO2, kg/year			sum c	of (265)(271) =	,	1813.32	(272)
CO2 emissions per m²			(272)	÷ (4) =		15.49	(273)
El rating (section 14)						85	(274)
13a. Primary Energy							
, 3,		En annu		Duimonu		D. F.,	
		Energy kWh/year		Primary factor		P. Energy kWh/year	
Space heating (main system 1)		(211) x		1.22	=	7841.01	(261)
Space heating (secondary)		(215) x		3.07	-] =	0	(263)
Energy for water heating		(219) x		1.22	=	2790.58	(264)
Space and water heating		(261) + (262) + (263) + (2	64) =		•	10631.6	(265)
Electricity for pumps, fans and electric ke	ep-hot	(231) x		3.07	=	520.12	(267)
Electricity for lighting		(232) x		0	=	1359.77	(268)
Energy saving/generation technologies Item 1				3.07] =	-2288.02	(269)
'Total Primary Energy			sum c	of (265)(271) =	I	10223.46	(272)
. c.aa. , Liloigi						10223.40	J (~ ' ~ ')

Primary energy kWh/m²/year

 $(272) \div (4) =$

87.34

(273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 25 March 2019

Property Details: 01-19-73120 A-5-12 PL1

Dwelling type:FlatLocated in:EnglandRegion:Thames valley

Cross ventilation possible: Yes Number of storeys: 2

Front of dwelling faces: South West

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Calculated 75.08

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach): 8 (Windows fully open)

Overheating Details:

Summer ventilation heat loss coefficient: 858.47 (P1)

Transmission heat loss coefficient: 121

Summer heat loss coefficient: 979,48 (P2)

Overhangs:

Orientation:	Ratio:	Z_overhangs:
North East (Front Elev)	0	1
North West (Side Elev)	0	1
South East (Side Elev)	0	1

Solar shading:

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
North East (Front Elev)	1	0.9	1	0.9	(P8)
North West (Side Elev)	1	0.9	1	0.9	(P8)
South East (Side Elev)	1	0.9	1	0.9	(P8)

Solar gains:

Orientation		Area	Flux	g_	FF	Shading	Gains
North East (Front Elev)	0.9 x	29.01	98.85	0.4	0.8	0.9	743.26
North West (Side Elev)	0.9 x	14.37	98.85	0.4	0.8	0.9	368.17
South East (Side Elev)	0.9 x	6.4	119.92	0.4	0.8	0.9	198.94
						Total	1310.36 (P3/P4)

Internal gains:

	June	July	August
Internal gains	528.26	506.3	515.6
Total summer gains	1936.94	1816.66	1610.46 (P5)
Summer gain/loss ratio	1.98	1.85	1.64 (P6)
Mean summer external temperature (Thames valley)	16	17.9	17.8
Thermal mass temperature increment	1.47	1.47	1.47
Threshold temperature	19.45	21.23	20.92 (P7)
Likelihood of high internal temperature	Not significant	Slight	Slight

Assessment of likelihood of high internal temperature: Slight